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Kelvin probe force microscopy of metallic surfaces used in Casimir force measurements
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Collège de France, Campus Jussieu, F-75252 Paris, France

7ISOF-CNR, via Gobetti 101, 40129 Bologna, Italy
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5 Place Jules Janssen, 92190 Meudon, France
(Received 14 July 2014; published 11 December 2014)

Kelvin probe force microscopy at normal pressure was performed by two different groups on the same
Au-coated planar sample used to measure the Casimir interaction in a sphere-plane geometry. The obtained
voltage distribution was used to calculate the separation dependence of the electrostatic pressure Pres(D) in
the configuration of the Casimir experiments. In the calculation it was assumed that the potential distribution
in the sphere has the same statistical properties as the measured one, and that there are no correlation effects
on the potential distributions due to the presence of the other surface. The result of this calculation, using the
currently available knowledge, is that Pres(D) does not explain the magnitude or the separation dependence of
the difference �P (D) between the measured Casimir pressure and the one calculated using a Drude model for
the electromagnetic response of Au. We discuss in the conclusions the points which have to be checked out by
future work, including the influence of pressure and a more accurate determination of the patch distribution, in
order to confirm these results.
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I. INTRODUCTION

Measurements of the Casimir interaction between gold-
covered mirrors now reach a good precision, which opens
the way to detailed comparisons with theoretical predictions.
Some measurements, performed at distances smaller than
1 μm, lead to unexpected conclusions [1–4]. These results
agree with a description of conduction electrons in metals
by the lossless plasma model, and deviate significantly from
that based on the Drude model which accounts for dissipation
[5–8]. Different conclusions are reached in another experiment
performed at distances of the order or larger than 1 μm [9].
The results of this experiment agree with predictions drawn
from the dissipative Drude model, after the contribution of the
electrostatic patch effect has been subtracted.

In this context, it is important to discuss carefully all
possible sources of systematic effects, in particular the effect
of electrostatic patches already discussed for various high
precision measurements [10–23], and more recently in the
context of Casimir force measurements [24–30]. The patch
effect is due to the fact that the surface of a metallic plate is
made of microcrystallites with different work functions [31].
For clean metallic surfaces studied by the techniques of surface
physics, the resulting voltage roughness is correlated to the
grain size as well as to the orientation of microcrystallites
[32]. For surfaces exposed to air, the situation is changed due

*Present address: Halliburton Energy Services, Houston, Texas
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to the unavoidable contamination by adsorbents, which spread
out the electrostatic patches, enlarge correlation lengths, and
reduce voltage dispersions [33–35].

The force due to electrostatic patches can be computed by
solving the Poisson equation, as soon as the correlations of the
patch voltages are known. In other words, the force depends
on the associated voltage correlation function C(k), with k a
patch wave vector. In many studies devoted to this question,
the spectrum was assumed to be flat between two sharp cutoffs
at minimum and maximum wave vectors [24]. Assuming that
these cutoffs are given by the grain size distribution measured
with an atomic force microscope (AFM), it was concluded
that the patch pressure was much smaller than the difference
between the experimental Casimir pressure [more precise
discussion below; see Eq. (1)] and the theoretical prediction
based on the Drude model [1].

A quasilocal model was proposed recently as a better
motivated representation of patches [29]. The model produces
a smooth spectrum which leads to conclusions differing
from those drawn from the sharp-cutoff model, due to the
contribution of low values of |k|. Using a very simple model
with a uniform distribution P(�) of patch sizes � up to
a largest value �max and a root-mean-square (rms) voltage
dispersion Vrms, it was found that the difference �P (D)
between experiment and theory based on the Drude model
could be qualitatively reproduced by fitting the model to the
experimental data. The corresponding values for �max and
Vrms are different from those obtained by identifying patch
and grain sizes, with �max ∼ 1 μm larger than the maximum
grain size ∼300 nm, and Vrms ∼ 12 mV smaller than the
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rms voltage ∼80 mV associated with random orientations of
clean microcrystallites of gold [1]. These values are however
compatible with a contamination of metallic surfaces, which
has to be expected anyway [33–35].

The results of [29] imply that patches have to be considered
as an important source of systematic effects in Casimir force
measurements. However, they do not prove that patches are
the explanation of the difference �P (D) observed in [1–4].
In order to address this possibility, one has to measure the
surface voltage distribution on the samples used in Casimir
experiments. The method is to use the dedicated technique
of Kelvin probe force microscopy (KPFM) which has the
ability of achieving the necessary size and voltage resolutions
[36–39]. Using the measurements of patch potential distri-
bution, it is then possible to evaluate the contribution of the
patches to the Casimir measurements and to subtract it when
comparing theory and experiments. This evaluation has to be
done in the plane-sphere geometry by using results in [30].

The purpose of this paper is to present the first results
of such an analysis with measurements performed on the
same Au-coated planar sample used to measure the Casimir
interaction in a sphere-plane geometry. The paper is organized
as follows. In Sec. II we briefly review Casimir measurements
on gold samples performed at Indiana University–Purdue
University Indianapolis (IUPUI). Section III presents normal
pressure KPFM measurements of the same gold samples.
These measurements are carried out independently and cross-
checked in two separate laboratories, the one at IUPUI
and another one at Istituto per la Sintesi Organica e la
Fotoreattivitá (ISOF) in Bologna. We discuss the sample
preparation and characterization, as well as the measurement
of the patch properties. In Sec. IV we use the measured
patch distribution to compute the electrostatic interaction
in the sphere-plane geometry of Casimir experiments. As
this is experimentally more difficult, we have not performed
KPFM measurements on the spherical plates. We have instead
used properties demonstrated in [30] to evaluate the patch
force by considering that the patch properties on the curved
surface are similar to those on the planar one. Within the
aforementioned caveats, the main conclusion of our study,
discussed in Sec. V, is that the calculated patch interaction does
not have the magnitude nor distance dependence which would
explain the difference �P (D) for the measurements reported
in [1–3].

II. CASIMIR EFFECT MEASUREMENTS

A planar sample was made by sputtering 130 nm Au on a
Si substrate. Morphology and roughness studies performed
by atomic force microscopy indicate excellent uniformity
and low roughness on the sample. The planar sample used
in this paper is one of the many made for the experiments
reported in [40]. The measured Casimir interaction observed
in this sample is indistinguishable within the experimental
error from the results reported in [2,3]. The experimental setup
for measuring the Casimir effect is similar to the one used in
previous work [1–3]. A Au-coated sapphire sphere [radius
R = (151.7 ± 0.2) μm], is attached to a micromechanical
torsional oscillator. To enhance adhesion between the ∼200 nm
thick Au and the sapphire, a thin (∼10 nm) layer of Cr is first

deposited on the sphere. The Au layers in both the sphere and
the sample are thick enough to be considered infinite from the
Casimir interaction’s standpoint.

The sample is mounted on a flat platform which has an
optical fiber rigidly attached to it. The fiber axis coincides with
the normal of the sample-platform structure. The fiber is part
of a two-color interferometer which keeps the sphere-sample
separation D stable within half a nanometer. As the sample
is brought into close proximity of the sphere, the interaction
between the two surfaces produces a shift in the resonance
frequency of the oscillator, which is used to extract the gradient
of the Casimir force, ∂DFC . The use of a sphere instead of
another planar surface avoids the problem of keeping the
two objects parallel but complicates the exact theoretical
description. A common approach to bypass this difficulty
relies on the proximity force approximation. When D/R � 1,
one can then approximate the sphere’s surface as a collection
of planar elements. Within this procedure, the force gradient
can be calculated as the sum of several local parallel plane
interactions, and

∂DFC(D) = 2πRPpp(D), (1)

where Ppp(D) is the Lifshitz expression for the Casimir
pressure between two parallel plates [41].

As customarily done in Casimir force measurements
[1–3,42,43], the apparatus was calibrated using a calculable
interaction, i.e., the electrostatic interaction between the sphere
and the sample. In this section, we assume the two objects to be
equipotentials, so that the electrostatic energy between them
is given by

Ee(D) = 1
2C(D)�V 2, (2)

where C(D) is the capacitance between the sphere and the
plane separated by a distance D, and the potential difference
between them �V = Vs − Vp. An external voltage V0 is
applied between the two surfaces in the calibration process
[1–3,42,43], so that the potential difference becomes �V −
V0.

From Eq. (2) the force and the gradient of the force can be
easily derived when �V is not a function of distance. In the
calibration process both the expression of the force and the
gradient of the force have been used. It turns out [1–3] that
the force

Fe(D) = 1

2

∂C(D)

∂D
(�V − V0)2, (3)

and the gradient of the force

∂DFe(D) = 1

2

∂2C(D)

∂D2
(�V − V0)2, (4)

are not zero when �V = 0. With the simple Eqs. (3) and (4)
corresponding to equipotential surfaces, the electrostatic inter-
action can be made null by a judicious choice of the applied
potential chosen to cancel the initial potential V0 = Vmin =
�V (Vmin is called the “minimizing potential”). A more precise
discussion taking into account the patch effect will be given
below, in Sec. IV.

In our calibration procedure, we have found that by taking
the derivative with respect to the potential difference, Vmin

is more accurately determined [44]. Either the use of the
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FIG. 1. Equivalent Casimir pressure as a function of separation
between the sphere and the sample. Error bars in P (�3 mPa) and D

(∼0.5 nm) are too small to be seen.

electrostatic force or the gradient of the electrostatic force
yield the same calibration parameters and, relevant for this
paper, the same value of Vmin. This minimizing potential was
found to be independent of D within the experimental accuracy
of 0.1 mV. The results of the Casimir interaction between the
sphere and the sample are shown in Fig. 1.

III. KPFM MEASUREMENTS

The electrostatic potential distribution Vp(x) on the Au
sample surface is measured by Kelvin probe force microscopy.
This contactless technique is based on monitoring long-ranged
electrostatic interactions between a cantilever and a sample.
A sharp metal-coated tip is microfabricated at the edge of
a cantilever which is maintained at a fixed potential. With
no mechanical action of the tip on the sample, electrostatic
forces exerted on the cantilever are measured, just as in AFM,
by the deflection of the cantilever using the reflection of
a laser beam off the tip [39,45]. Because these forces are
proportional to the variation with distance D of the local
capacitance C between the tip and the sample, a direct
quantification of the surface potential difference �V between
the tip and the sample is not trivial. To achieve this, KPFM
measurements exploit a Zeeman vibrating capacitor setup
[36]. The two electrodes of the capacitor are the sample
and the tip which is forced to oscillate at a fixed frequency
ω while raster-scanning the surface of the sample at fixed
separation distance D. In such an amplitude modulation (AM)
mode, which is used for all KPFM measurements reported
in this paper, the tip oscillations modulate the tip-sample
electrostatic interaction energy U (D) = 1

2C�V 2, assuming a
linear relationship between local charges and local potentials
[46]. The electrical potential inhomogeneities of the surface
sample can thus be mapped by detecting the amplitude
variations of the free tip oscillations.

FIG. 2. (Color online) KPFM image of the electrostatic potential
distribution Vp(x) on the surface of the Au sample recorded at ISOF.
This image is composed of 512 × 512 pixels, with a lateral size of
15.36 μm. The scale bar corresponds to 2 μm and the scan range is
20 mV. The amplitude of the modulation is V1 = 2.5 V.

More precisely, a feedback loop applies an adjustable
DC bias offset potential V0 to the cantilever tip in order
to minimize the interaction between the tip and the sample.
Superimposed to this DC voltage bias, an alternating current
(AC) signal is applied to the tip harmonically at a frequency
ω. In this case, �V is replaced in the expression for the
interaction energy by the total voltage �V − V0 + V1 sin(ωt)
between the tip and the sample, where V1 is the amplitude
of the modulation. Then, the ω component of the result-
ing force Fω = −∂DUω = −∂DC [(�V − V0) V1 sin(ωt)], di-
rectly measured with a lock-in amplifier, is canceled when
V0 = �V . The feedback circuit monitors the bias V0 applied
to compensate for the surface potential �V , thus providing a
direct quantification of the latter. Note that the tip potential
is calibrated using HOPG (high ordered pyrolytic graphite),
a substrate very stable in air. This calibration implies that
the real potential Vp(x) on the sample is determined up to
a constant value (at a fixed tip-sample distance). Such an
offset does not affect the measurement of the variations of
the surface potential (see Sec. IV below for a more precise
discussion).

The KPFM measurements shown in Fig. 2 have been per-
formed at ISOF using a commercial microscope Multimode III
(Bruker) equipped with an Extender Electronics module. The
measurements have been acquired in a nitrogen environment
(relative humidity smaller than 10%) at room temperature.
Potential maps have been recorded over a surface area of
15.36 × 15.36 μm2, with 512 pixels per line, using a scanning
rate of 1 Hz per line. In order to obtain a sufficiently large and
detectable mechanical deflection of the microscope tip, we
used a 20 nm radius Pt/Ir coated Si ultra levers (SCM, Bruker)
with oscillating frequencies ω ∼ (75 ± 15) kHz and stiffness
k ∼ 2.8 N m−1. The measurements have been performed at a
fixed tip-sample distance D = 30 nm, chosen as the minimal
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distance that prevents artifacts due to the cross-talking between
topographic and electrical signals (precise criterion below).

Similar results were obtained at IUPUI using a different
AFM (Brueker Dimension) with 20 nm radius Cr/Pt coated
Si levers (Budget Sensors, TAP190E-G) under similar en-
vironmental conditions. These cantilevers are stiffer, with
k ∼ 48 N m−1 and a resonance frequency ∼(190 ± 30) kHz.
The KPFM measurements were performed over a smaller area
of 5 × 5 μm2, with 256 points per line and at 1 Hz per line.
The measurements were repeated at different separations and
it was found that the results from 20 to 60 nm were compatible
and reproducible when V1 was kept below 3 V, without any
cross-talk artifacts.

The criterion for the avoidance of cross-talking in both
cases (IUPUI and ISOF) is the observation of not too
large correlations 〈h(x,y)�V (x,y)〉 < 0.5 between the height
h(x,y) measured by the AFM at point (x,y) and the potential
�V (x,y) measured by the KPFM at the same point.

Obviously, the measured KPFM image is a convolution be-
tween the real potential map and the microscope transfer func-
tion, leading to unavoidable broadening of the nano-objects
and underestimation of the measured potential differences. The
measured map can be retrieved using linear deconvolution,
although perfect recovery is impossible without a precise
description of the noise in the system [47,48]. The transfer
function can be described in terms of tip-sample electrostatic
interactions and its width corresponds to effective surface
area of the sample interacting with the tip. Due to the
long-range nature of the electrostatic interactions, the area
of the surface sampled in such a measurement expands several
tens of nanometers beyond the area underneath the apex of the
probe. In addition, the surrounding part of the conical tip as
well as the oscillating cantilever contribute to the interaction.
Other experimental parameters, in particular the amplitude
V1 of the modulation, affect the transfer function and its
analytic evaluation requires a comprehensive simulation of
the tip-sample system [49]. Usually, the transfer function has
been calculated using simplified tip geometries [50,51].

In this work, we have bypassed simulations and simplified
geometries by exploiting a semiquantitative model developed
in Ref. [39]. This approach has been checked by measuring
nano-patterned samples with well-defined geometries. Previ-
ous experiments performed with the same tip-sample geometry
at the same separation distance allowed us to evaluate an
effective microscope transfer function width of ∼100 nm
[37]. In the case of an isotropic surface, the transfer function
can be assumed to be Gaussian. In this situation, a simple
relation w = 0.626 × LR was recently demonstrated between
the width (w) of the effective area and lateral resolution (LR)
defined as the minimal detectable feature size [38,52]. For
ISOF measurements, the pixel size of 30 nm corresponds to a
third of the effective area width. This allows us to neglect
pixelization and convolution artifacts for areas larger than
160 nm (i.e., larger than 5 pixels width), and implies that
the acquired KPFM images provide us with fair maps of the
gold surface potential for patch sizes larger than 160 nm. We
tested this property by using the same KPFM experimental
setup to measure the electrical potential of interdigitated
gold nanoelectrodes having a channel length and an electrode
width of 200 nm. By comparing the applied potential and the

measured one, we observed an underestimation of the electrical
potential difference with AM-KPFM of the order of 20%.

IV. ELECTROSTATIC PATCH INTERACTION BETWEEN
A PLANE AND A SPHERE

In the following we recall the basic equations to evaluate the
electrostatic patch interaction between a plane and a sphere,
using the exact solutions derived in [30]. In particular, the
known case of perfect equipotential surfaces on the plane and
the sphere can be solved in this way (see Appendix C in [30]).
Here we write the exact solutions for patchy surfaces, and
show how to deduce the patch interaction from the KPFM
data measured on the gold samples. Writing this interaction as
an equivalent pressure, as in Eq. (1), we finally compare our
results to �P (D).

In order to solve the Poisson equation in the sphere-plane
geometry with arbitrary potential distributions on both sur-
faces, it is advantageous to use bispherical coordinates because
the equation is then separable and the surfaces correspond to
constant values of the bispherical coordinate η [30]. Writing
the boundary value problem for the electrostatic potential in the
space between the sphere and the plane, the interaction energy
can be expressed as a double integration over solid angles
in bispherical coordinates,

∫
d� ≡ ∫ π

0 dξ
∫ 2π

0 dφ sin ξ , of a
quadratic form of the surface potentials (see Eq. (11) of [30]).
After performing a coordinate transformation from bispherical
to spherical or polar coordinates, appropriate for the spherical
and planar surfaces respectively, the integration energy can be
written in the form

Esp =
∑
a,b

∫∫
d�ad�bVa(�a)Ea,b(�a; �b)Vb(�b), (5)

where Va,b(�a,b) denote the arbitrary electrostatic potentials
on the sphere and the plane (with a,b = s or p respectively),
�s ≡ (θ,φ) are spherical coordinates on the sphere, and
�p ≡ (ρ,φ) are polar coordinates on the plane. The integration

measures are defined as
∫

d�s = ∫ 2π

0 dφ
∫ π

0 dθ sin θ (here θ

is a polar angle on the sphere) and
∫

d�p = ∫ 2π

0 dφ
∫ ∞

0 dρ ρ

(here ρ is the radius for a polar coordinate system defined on
the plane with origin below the apex of the sphere). The kernels
Ea,b(�a; �b) depend on the distance D between the sphere and
the plane, and their explicit expressions are given in Appendix
B of [30]. By taking the derivative of the energy (5) with
respect to D, the electrostatic patch force between the sphere
and the plane is computed:

Fsp =
∑
a,b

∫∫
d�ad�bVa(�a)Fa,b(�a; �b)Vb(�b),

Fa,b(�a; �b) = ∂Ea,b(�a; �b)

∂D
. (6)

This expression is general for arbitrary boundary conditions
on the sphere and the plane.

As explained in Sec. III, we have measured the patch
voltages on the planar Au samples used in our Casimir force
measurements, but we do not have the same KPFM experi-
mental knowledge for the sphere used in Casimir experiments.
In this context, we use the following strategy to compute the
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total patch force. We consider that the patch properties on
the weakly curved surface (R � D) are similar to those on the
planar one on the length scales of relevance for our calculation,
and we use the fact known from [30] that the kernels Es,s and
Ep,p thus lead to similar contributions (again for R � D). We
also assume that there are no statistical correlations between
the patches on the sphere and the plane (〈Vs(�s)Vp(�p)〉 = 0),
so that the kernel Es,p leads to a negligible contribution. We
then approximate the total force between the plane and the
sphere as twice the patch interaction calculated in the simpler
case when the sphere is grounded (Vs = 0) and the plane has
the patch distribution known from measurements

Fsp ≈ 2
∫∫

d�pd�′
pVp(�p)Fp,p(�p; �′

p)Vp(�′
p). (7)

We expect that this approximate expression for the patch force
gives the correct order of magnitude and distance dependence
for the patch interaction, provided the patch properties on the
sphere and the plane are similar, and the cross-terms between
the sphere and the plane have a negligible contribution.

As discussed in Sec. II, an external voltage V0 is applied
between the two surfaces in order to perform the electrostatic
calibration of the system. This bias V0 is swept to observe
the quadratic dependence of (3) or (4) on V0 at fixed sphere-
plane separation D, and obtain its minimum which defines the
minimizing potential

0 = ∂Fsp

∂V0

∣∣∣∣
V0=Vmin

. (8)

A precise description of this problem is built up by adding
a constant value V0 to the patchy potential Vp in (7) and
sweeping it. Solving (8), we find that Vmin is defined so that
it compensates exactly the average value V p of the patch
potential over the zone of electrostatic influence, with the latter
defined from the kernel Fp,p [30]:

Vmin = −V p, V p ≡
∫

d�p
∫

d�′
pVp(�p)Fp,p(�p; �′

p)∫
d�p

∫
d�′

pFp,p(�p; �′
p)

. (9)

The size of the zone of electrostatic influence is of the order
of

√
RD ∼ 10 μm, with the numbers corresponding to the

experiments in [1–3]. The minimizing potential Vmin, which
depends of the specific realization of the patch voltage in the
zone of electrostatic influence, has to vary when the sphere-
plane separation or the lateral position of the sphere above
the plane are changed. However, this variation can be small
due to the averaging of the effect of patches over the zone of
electrostatic influence.

With the more complete treatment of the electrostatic
problem now achieved, setting the applied potential V0 equal
to Vmin does no longer nullify the electrostatic interaction
between the sphere and the plane, but only minimizes it.
There indeed remains the effect of the dispersion of the patchy
potential Vp over the zone of electrostatic influence. This
statement is made quantitative by evaluating the residual patch
force (7) which remains at the minimizing potential (9):

Fres ≡ Fsp|V0=Vmin

= 2
∫∫

d�pd�′
pδVp(�p)Fp,p(�p; �′

p)δVp(�′
p). (10)

Here δVp(�p) is the deviation of the patchy potential from its
average over the zone of electrostatic influence,

δVp(�p) ≡ Vp(�p) − Vp, (11)

so that the residual patch force can effectively be regarded
as measuring the dispersion of δVp(�p) over the zone of
electrostatic influence.

At this point, it is worth discussing the contribution of
patches corresponding to given size scales. For small sizes,
smaller than the distance D between the two plates, the
contribution is suppressed by the kernel Fp,p obtained by
solving the Poisson equation. For large sizes, larger than
the size

√
RD of the zone of electrostatic influence, the

contribution could be large before the calibration process, but
it is essentially canceled out in this process because Vmin is
defined so that it compensates the average potential of patches
over this zone. It follows that the significant contributions are
mainly associated to size scales in the intermediate interval
from D to

√
RD, that is from a fraction of a μm to 10 μm

with the numbers corresponding to the experiments in [1–3].
These qualitative statements are made precise by using the
Eq. (10), with the expression of the kernel Fp,p taken from
[30].

When performing numerical evaluations, we have to face
the difficulty that the measured samples are, of course, finite,
as discussed in Sec. III. In order to obtain patch distribution
data over a sufficiently large area, we used the following
“mirror symmetry + replica” procedure. We took the measured
KPFM data of the finite-size square sample (we call it 1 × 1
cell), generated a 2 × 2 cell by taking mirror images of the
original 1 × 1 cell, and then the 2 × 2 cell was periodically
replicated on two dimensions, until the final size reached
80 × 80 μm2, which is certainly enough for our numerics.
Clearly, this procedure introduces artificial correlations over
distances larger than the original sample sizes (15 × 15 μm2

for the larger ones), and it also ignores possible long-distance
correlations associated with very large patches. We believe our
method to be valid, at least for preliminary estimations, as a
consequence of the discussion of the preceding paragraph. The
contribution of possibly large patches (with sizes larger than√

RD) is essentially washed out in the electrostatic calibration
process because Vmin compensates the average potential of
patches over the zone of electrostatic influence. We computed
the voltage correlation function from the KPFM data, and the
resulting correlation within the measurement area decreases as
a function of distance in an approximate exponential form. This
supports our assumption above for computing the electrostatic
patch interaction.

Figure 3 shows our numerical results for the patch interac-
tion, measured as an equivalent patch pressure as in Eq. (1).
Though they were obtained on different parts of the same
sample with different instruments, scan sizes and resolutions,
the measurements made at IUPUI (solid line with squares)
and ISOF (dashed line with circles) lead to comparable patch
pressures, in terms of their magnitude and variation with
distance. In particular, both curves have a different law of
variation with D and smaller magnitudes than �P (D), also
reproduced for comparison on Fig. 3. For this difference, the
bars show the experimental uncertainties discussed in [2,3],
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FIG. 3. Equivalent electrostatic patch pressure Pres computed for
the IUPUI (solid line with squares) and ISOF (dashed line with
circles) data, versus distance D. We also show, for comparison,
the difference �P (D) between experimental measurements of the
Casimir pressure and theoretical predictions based on the Drude
model.

similar to those shown in Fig. 1. The theoretical calculations
from the Drude model are described in [1,2,29]. They are
done at room temperature T = 295 K using tabulated optical
data extrapolated to low frequencies with a Drude model
with parameters �P = 8.9 eV for the plasma frequency and
γ = 0.0357 eV for the damping rate. A simple model for
roughness corrections is used [2], with root-mean-square
roughness heights of 3.6 and 1.9 nm, for the plane and the
sphere respectively.

V. CONCLUSIONS

In this paper, we have shown that it is possible to measure
patch properties on the same Au samples used in Casimir
experiments [2,3]. In fact we did it on the planar samples and
we assumed that the properties were similar on the spherical
ones. We then estimated the contribution of patches to the force
in the plane-sphere geometry used in Casimir experiments
[30].

We have discussed the subtleties associated to small and
large patch sizes. The influence of patch sizes smaller than
the plane-sphere distance D is suppressed in the solution of
the Poisson equation. The influence of patch areas larger than
the zone of influence 2πRD is canceled by the voltage V0

applied in the electrostatic calibration. This entails that, for
the parameters used in the Casimir experiment, the significant
contributions from patches are mainly associated with sizes
in the interval from a fraction of a μm to ∼10 μm. Hence
the resolution of the AM-KPFM measurements discussed in
Sec. III should be sufficient for a reliable estimation of the
effect of electrostatic patches shown in Sec. IV.

The patch pressure estimations shown in Fig. 3 have smaller
magnitudes and a different law of variation with D than the
difference �P (D) observed in Casimir experiments [2,3].
They do not reproduce the results which were found in [29]
to fit this difference. This means that the statistical properties
measured on the patches differ from the model used in [29].
We also emphasize at this point that the description of the
patch interaction in [29] was based on the proximity force
approximation, whereas the present paper used the much more

satisfactory approach developed in [30] to perform precise
evaluations in the plane-sphere geometry.

The analysis of the present paper is preliminary and some
of its limitations have to be cured by further work. In our
calculation of the sphere-plane patch force (7), we have
assumed that the patches on the sphere had the same statistical
properties as on the plane, and also that the cross-correlations
between the patches on the sphere and plane had a negligible
contribution. In order to confirm these assumptions, it would
be necessary to measure patches on the spherical mirrors,
which is an experimental challenge. We have measured patch
distributions on samples at ambient pressures, whereas the
Casimir experiments were performed at ∼10−7 torr. As the
pressure could influence the contamination process and hence
the patch properties, it would be crucial to repeat the patch
characterization on the same metallic samples and under the
same environmental conditions as in the vessel where Casimir
measurements are done.

Our KPFM measurements were done with a scan size of
the order of 15 μm and a resolution of the order of 160 nm
(ISOF experiment). Such numbers should be sufficient to get
a qualitative characterization, as they cover the patch sizes
having a critical influence on the force between the plane
and the sphere. Of course, larger scan sizes and improved
resolutions would allow one to test the reliability and accuracy
of the whole method. Further work is thus needed to confirm
the present result that the patch contribution does not match
the difference �P (D) observed in Casimir experiments [1–4].

Note added. While this paper was under review, a preprint
[53] has become available with conclusions differing from
ours. It is asserted there that AM-KPFM measurements under-
estimate the potential differences as measured by frequency
modulation (FM) KPFM and thus lead only to a lower bound
for the patch contribution to the force. Underestimations
by AM-KPFM of the true potential differences on metallic
samples have indeed been reported [54], and they depend on
experimental conditions. As explained at the end of Sec. III, we
have checked that the underestimation is of the order of 20%
for typical patch sizes of 200 nm and under the experimental
conditions used in our measurements. Though it calls for
further work in order to confirm the results of the present
paper, such an underestimation does not affect its conclusions
(see the preceding paragraphs).

ACKNOWLEDGMENTS

The authors thank the participants to the ESF Re-
search Networking Programme CASIMIR (http://www.
casimir-network.org) for many discussions related to the topic
of this paper. Work at Los Alamos National Laboratory was
carried out under the auspicies of the LDRD program. This
work was performed, in part, at the Center for Nanoscale Ma-
terials, a U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences User Facility under Contract No.
DE-AC02-06CH11357. R.S.D. acknowledges support from
the IUPUI Nanoscale Imaging Center, Integrated Nanosys-
tems Development Institute, Indiana University Collaborative
Research Grants, and the Indiana University Center for Space
Symmetries.

062115-6

http://www.casimir-network.org


KELVIN PROBE FORCE MICROSCOPY OF METALLIC . . . PHYSICAL REVIEW A 90, 062115 (2014)
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